Maximum modular graphs
نویسندگان
چکیده
Modularity has been explored as an important quantitative metric for community and cluster detection in networks. Finding the maximum modularity of a given graph has been proven to be NPcomplete and therefore, several heuristic algorithms have been proposed. We investigate the problem of finding the maximum modularity of classes of graphs that have the same number of links and/or nodes and determine analytical upper bounds. Moreover, from the set of all connected graphs with a fixed number of links and/or number of nodes, we construct graphs that can attain maximum modularity, named maximum modular graphs. The maximum modularity is shown to depend on the residue obtained when the number of links is divided by the number of communities. Two applications in transportation networks and datacenters design that can benefit of maximum modular partitioning are proposed.
منابع مشابه
Algorithmic Aspects of Switch Cographs
This paper introduces the notion of involution module, the first generalization of the modular decomposition of 2-structure which has a unique linear-sized decomposition tree. We derive an O(n) decomposition algorithm and we take advantage of the involution modular decomposition tree to state several algorithmic results. Cographs are the graphs that are totally decomposable w.r.t modular decomp...
متن کاملUsing modular decomposition technique to solve the maximum clique problem
In this article we use the modular decomposition technique for exact solving the weighted maximum clique problem. Our algorithm takes the modular decomposition tree from the paper of Tedder et. al. and finds solution recursively. Also, we propose algorithms to construct graphs with modules. We show some interesting results, comparing our solution with Ostergards algorithm on DIMACS benchmarks a...
متن کاملMaximum Weight Independent Sets in Odd-Hole-Free Graphs Without Dart or Without Bull
The Maximum Weight Independent Set (MWIS) Problem on graphs with vertex weights asks for a set of pairwise nonadjacent vertices of maximum total weight. Being one of the most investigated and most important problems on graphs, it is well known to be NP-complete and hard to approximate. The complexity of MWIS is open for hole-free graphs (i.e., graphs without induced subgraphs isomorphic to a ch...
متن کاملOn algorithms for (P5, gem)-free graphs
A graph is (P5,gem)-free, when it does not contain P5 (an induced path with five vertices) or a gem (a graph formed by making an universal vertex adjacent to each of the four vertices of the induced path P4) as an induced subgraph. We present O(n2) time recognition algorithms for chordal gem-free and for (P5,gem)free graphs. Using a characterization of (P5,gem)-free graphs by their prime graphs...
متن کاملIndependent Sets of Maximum Weight in Apple-Free Graphs
We present the first polynomial-time algorithm to solve the maximum weight independent set problem for apple-free graphs, which is a common generalization of several important classes where the problem can be solved efficiently, such as claw-free graphs, chordal graphs, and cographs. Our solution is based on a combination of two algorithmic techniques (modular decomposition and decomposition by...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012